Research Associate
Email: ll582@medschl.cam.ac.uk
Background
I am currently a Research Associate in Biomedical Data Science in the department. I research ways to combine machine learning, genomics and medical imaging to better understand cardiovascular diseases. I also lead the Green Algorithms initiative to promote more environmentally sustainable computational science. I am also a Software Sustainability Institute Fellow, a College Post-Doctoral Associate at Jesus College, Cambridge, an Associate of the Senior Common Room at King’s College, Cambridge, and an Associate Fellow of Advance HE. Full CV here.
I first studied in Paris (France) at Lycée Saint-Louis and ENSAE Paris where he earned a BSc and a French *Diplôme d’Ingénieur* (MSc) studying mainly mathematics and statistics, but also theoretical physics and economics. During these years, I interned as a Data Scientist at Sidetrade (Paris) and Amazon EU (Luxembourg). In 2017, I headed to the University of Oxford, where I completed an MSc in Statistics and Machine Learning. I joined Cambridge and the Cardiovascular Epidemiology Unit in 2018 for a PhD in Health Data Science supervised by Prof. Michael Inouye and supported by the MRC-DTP. My PhD, completed in 2022, looked at machine learning tools used to predict protein-protein interactions and the carbon footprint of computational research.
Research Interests
– Combining machine learning, genomics and medical imaging to better understand diseases, in particular cardiovascular ones.
– Helping clinicians leverage artificial intelligence tools for patient care.
– Environmentally-sustainable science: how to quantify and reduce the carbon footprint of computational science. We developed the Green Algorithms project to promote best-practices.
– Biostatistics modelling for clinical studies (human and veterinary medicine).
For more details and updates on these projects, see my website and my Twitter feed.
Selected Publications
Of special interest:
• Lannelongue, L., Grealey, J., Inouye, M., 2021. Green Algorithms: Quantifying the Carbon Footprint of Computation. Advanced Science 8, 2100707. https://doi.org/10.1002/advs.202100707
• Lannelongue, L., Grealey, J., Bateman, A., Inouye, M., 2021. Ten simple rules to make your computing more environmentally sustainable. PLoS Comput Biol 17, e1009324. https://doi.org/10.1371/journal.pcbi.1009324
• Lannelongue, L., Inouye, M., 2022. Construction of in silico protein-protein interaction networks across different topologies using machine learning. bioRxiv. https://doi.org/10.1101/2022.02.07.479382
Full list of publications on Google Scholar.