Efficient Design for Mendelian Randomization Studies: Subsample and Two-sample Instrumental Variable Estimators

<table>
<thead>
<tr>
<th>Journal:</th>
<th>American Journal of Epidemiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>AJE-01347-2012.R2</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Practice of Epidemiology</td>
</tr>
<tr>
<td>Key Words:</td>
<td>Mendelian randomization, instrumental variable, Epidemiologic methods</td>
</tr>
</tbody>
</table>
Efficient Design for Mendelian Randomization Studies: Subsample and Two-sample Instrumental Variable Estimators

Brandon L. Pierce and Stephen Burgess

Author affiliations: Department of Health Studies, University of Chicago, Chicago, IL and University of Chicago Comprehensive Cancer Center, Chicago, Illinois (Brandon L. Pierce); Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (Stephen Burgess).

Corresponding Author
Dr. Brandon Pierce
Center for Cancer Epidemiology and Prevention
The University of Chicago
5841 South Maryland Avenue, Suite N101, MC2007
Chicago, IL 60637
Phone / Fax: 773-702-1917 / 773-834-0139
Email: brandonpierce@uchicago.edu
1 Abbreviations

2 CI, confidence interval

3 IV, instrumental variable

4 MR, Mendelian randomization

5 SE, standard error

6 SUR, seemingly unrelated regression

7

8 Running Head

9 Efficient Mendelian Randomization Design

10
ABSTRACT

Mendelian randomization (MR) is a method for estimating the causal relationship between an exposure and an outcome using a genetic factor as an instrumental variable (IV) for the exposure. In the traditional MR setting, data on the IV, exposure, and outcome are available for all participants. However, obtaining complete exposure data may be difficult in some settings, due to high measurement costs or lack of appropriate bio-specimens. The authors use simulated datasets to assess power and bias for MR when exposure data are available for a subset (or an independent set) of participants. We show that obtaining exposure data for a subset of participants is a cost-efficient strategy, often having negligible effects on power compared to a traditional complete-data analysis. The size of the subset needed to achieve maximum power depends on IV strength, and maximum power is approximately equal to the power traditional IV estimators. Weak IVs are shown to lead to bias towards the null when the subsample is small and towards the confounded association when the subset is relatively large. Various approaches for confidence interval calculation are considered. These results have important implications for reducing the costs and increasing the feasibility of MR studies.

Key Words: Mendelian randomization, instrumental variable, Epidemiologic methods
Mendelian randomization (MR) is a study design used to test or estimate the causal relationship between an exposure and an associated outcome using data on inherited genetic variants that influence exposure status (1, 2). Because associations between exposures and outcomes are potentially attributable to unmeasured confounding and reverse causation, using a genetic determinant of the exposure as an instrumental variable (IV) allows the causal component of the observed association to be estimated. An IV is required to be (i) associated with the exposure, (ii) independent of the outcome conditional on the exposure and confounders of the exposure-outcome association (measured or unmeasured), and (iii) independent of all unmeasured confounders of the exposure-outcome association (1-3). Genetic variants are attractive as candidate IVs because they are randomly assigned at conception and are not affected by potentially confounding environmental factors.

If the exposure and outcome of interest are continuous traits, with a single IV, the MR estimator can be conceived as a ratio of two estimates: the “reduced form” estimate (the coefficient for the association between the IV and the outcome) divided by the “first-stage” estimate (the coefficient for the association between the IV and the exposure). In the traditional MR setting, these two estimates are obtained using a single sample, where data on the IV, exposure, and outcome are available for all participants. However, in practice, complete data may not always be obtainable. For researchers conducting MR investigations in the context of large genetic association studies, it may not be possible to obtain exposure data for all participants. For example, if the exposure is a biomarker, measurements may be prohibitively expensive to conduct for a large study or impossible to conduct due to the lack of appropriate bio-specimens available for analysis (for example, lack of prospectively-collected or adequately
preserved samples for biomarker measurement). Thus, the exposure of interest may only be measurable for a subset of individuals.

In this work, the authors use simulated data to explore the implications of incomplete exposure data for power and bias in MR studies using “subsample IV estimators”. We show that generating exposure data for a subset of study participants, rather than all individuals, does not substantially decrease power when the IV is relatively strong. In fact, generating exposure data for all participants can be an extremely cost inefficient strategy. We show this concept also applies to “two-sample IV estimators” (4-6), where the first-stage and the reduced form estimates are obtained from independent (non-overlapping) samples of individuals drawn from the same population. In addition, we demonstrate the effects of weak IVs (genetic variants that explain a small proportion of the variation in the exposure) in the context of subsample and two-sample IV methods and compare various methods for estimating standard errors (SEs) and confidence intervals (CIs).

Large sample sizes are needed for MR studies (7, 8), and the costs associated with exposure measurement can be substantial. The sub-sample and two-sample IV approaches described here have broad relevance for MR investigations of exposures that are expensive or impossible to measure for large samples, including biomarkers. Our findings should increase the feasibility and cost-efficiency of MR, enabling the use of existing genetic data sources, such as large-scale genetic association studies, for MR analyses.

MATERIALS AND METHODS

We define subsample and two-sample IV estimation as follows. Assuming data on the IV (G) are available for all participants, subsample IV estimation can occur when data on the
exposure (X) are available only for a subset of participants, but outcome (Y) data are available for all participants. The samples with data on X and Y have sample sizes defined as n_X and n_Y, respectively. Subsample IV estimation could also occur when data on Y are available for a subset of participants, but data on X are available for all participants, although this strategy is not considered further in this paper. Two-sample IV estimation occurs when data on G and X are available for one sample and data on G and Y are available on an independent sample, such that no individuals have data on both X and Y.

We used simulated cohort datasets to investigate the effect of varying sample size for subsample and two-sample IV estimators on power, precision, and bias. For each simulated scenario, we generated 10,000 datasets with 10,000 observations on four variables: a genetic susceptibility score used as the IV (G), an exposure (X) influenced by G, an outcome (Y) influenced by X, and a confounding variable (U), assumed unmeasured, with effects on both X and Y. G and U were generated randomly from a standard normal distribution. X was also a randomly generated standard normal variable with linear effects exerted by G and U:

$$x_i = \beta_{GX}g_i + \beta_{UX}u_i + \varepsilon_{Xi} \quad \text{with} \quad \varepsilon_{Xi} \sim N(0,1). \quad (1)$$

X was standardized to have variance one. Values of β_{GX} were chosen to produce specific R^2 values for the first-stage regression of X on G using the following equation:

$$R^2_{GX} = \frac{\text{var}(\beta_{GX})}{\text{var}(\beta_{GX}) + \text{var}(\beta_{UX}) + \text{var}(\varepsilon_X)}. \quad (2)$$

Y was a randomly-generated standard normal variable with linear effects of X and U:

$$y_i = \beta_{XY}x_i + \beta_{UY}u_i + \rho_{Yi} \quad \text{with} \quad \rho_{Yi} \sim N(0,1). \quad (3)$$

In order to vary n_X, X values were randomly set to missing. IV strength in a given dataset is measured by the F statistic from the first-stage regression of X on G. IVs with an average first-stage F <10 are conventionally considered to be weak, although this threshold is arbitrary,
and some bias persists even for non-weak IVs (9). F is defined as the ratio of the variance explained by the model to the residual variance in the model. F can be expressed as a function of the first-stage R^2, the sample size (n), and the number of IVs (k):

$$F = \frac{R^2(n-1-k)}{(1-R^2)k}$$

Thus, F increases as R^2 and n increase and as k decreases. The IV used here is continuous; however, the our conclusions regarding power and precision would apply to any IV or IV set with the same first-stage R^2, including categorical or ordinal IVs and multi-IV scenarios (7) (see discussion).

We conducted four sets of simulations in order to assess power and bias for subsample IV estimators. In order to assess how power varies according to the size of the subsample (simulation 1), we varied n_X from 25 to 10,000 and β_{XY} from 0 to 0.3, with n_Y set to 10,000 and the first-stage R^2 set to 0.025. In order to assess how IV strength affects power (simulation 2), we varied n_X from 25 to 10,000 and the first-stage R^2 from 0.002 to 0.05, with n_Y set to 10,000 and β_{XY} set to 0.2. In order to assess bias when IVs are weak (simulation 3), we varied the n_X/n_Y ratio from 0.1 (a small subsample) to 1.0 (the complete-data scenario) and varied the average first-stage F statistic from ~1 to ~20, with β_{XY} set to 0.1. Varying F was accomplished as follows: for each n_X/n_Y ratio, the first-stage R^2 was held constant (to a value that produced an average first-stage F of 20 when $n_Y=10,000$) and n_Y was varied from 100 to 10,000, with the value n_X determined by the n_X/n_Y ratio. This approach allowed us to assess weak IV biases for a wide spectrum of values for F and n_X/n_Y. We also evaluated bias for weak IVs by varying n_X/n_Y (from 0.1 to 1.0) and R^2 (from 0.001 to 0.03), with β_{XY} set to 0.1 and n_Y set to 10,000, 3,000 or 1,000 (Simulation 4). Similar simulations were also conducted for two-sample IV estimators,
where the first-stage sample (n_X) and the reduced form sample (n_Y) consisted of independent sets of participants. Confounder effects β_{UX} and β_{UY} were set to 0.2 in simulations 1 and 2, leading to positive confounding. β_{UX} and β_{UY} were set to 0.3 in simulations 3 and 4 to better demonstrate weak IV bias. Simulations were repeated in the absence of confounding, although it is known that X-Y confounding does not produce substantial bias for traditional IV analyses when IVs are strong (7).

MR estimates were obtained using the Wald ratio method (1). For each simulation, two linear regressions were performed: a regression of X on G (the first-stage regression) and a regression of Y on G (the reduced form regression). The ratio of these estimates (the Wald estimate) and corresponding CIs were obtained using the `suest` and `nlcom` commands in Stata (10). The `suest` (seemingly unrelated regression (SUR)) command combines the regression estimates into one parameter vector and a simultaneous sandwich (robust) variance-covariance matrix. The `nlcom` command computes SEs and CIs for nonlinear combinations of parameter estimates using the delta method. We did not use the traditional two-stage least squares procedure (11), as this method discards individuals with missing data on X, whereas the Wald method can include such individuals in the reduced form regression. Power was defined as the proportion of the 10,000 datasets in which a statistically significant effect of X on Y was observed (two-sided P<0.05).

For three randomly-chosen datasets from simulation 2, comprising a strong, moderate, and weak IV scenario, we compared five strategies for calculating SEs and 95% CIs for the MR estimate. First, we used a sequential regression approach where linear regression was used to generate a coefficient for the G-X association; this coefficient was then used to generate predicted values of X for all individuals with data on Y (n_Y). The association between the
predicted X and Y was assessed using linear regression with robust SEs to mitigate the failure of the method to account for the uncertainty in the predicted X. We also used the SUR/delta method described above, Fieller’s theorem, which is a method for calculating CIs for a ratio of two normally distributed variables (12), and a Bayesian method using weakly-informative prior distributions (13). Finally, we used a bootstrap method for CI estimation in which 1,000 random samples of equal size to the original sample were drawn, with replacement, from each of the samples used to generate the first-stage and reduced form estimates.

RESULTS

Simulation 1: For a study of 10,000 individuals with data on Y, Figure 1 (left panel) shows how varying the size of the subsample (n_X) affects power to detect a significant effect of X on Y. For all effect sizes considered, the power of the subsample IV estimator has an upper bound approximately equal to the power of the reduced form estimator (shown as horizontal dotted lines), which is approximately equal to the power for a traditional IV approach for these scenarios, where complete data is available for all n_Y individuals. As n_X increases, power approaches this upper bound, and gains in power diminish. For these scenarios, our results indicate >90% of the maximum power can be achieved by obtaining exposure data on only 20% of the sample. Figure 1 (right panel) shows the SEs for these scenarios. In general, the SEs for subsample IV estimates are larger when the effect size is larger, and SEs decrease as n_X increases. SEs converge to the full analysis SE of 0.063 for all effect sizes as n_X approaches n_Y. Using a two-sample IV approach, results are very similar (Web Figure 1). Power for the two-sample approach appears to be very slightly lower than the subsample approach, and SEs do not converge to a common value as n_X approaches n_Y.
Simulation 2: When we vary the strength of the IV (as measured by \(R^2 \)), holding the
effect size constant at 0.2, we observe that as \(R^2 \) decreases, power approaches its maximum more
slowly as \(n_X \) increases (Figure 2). Thus, the value of \(n_X \) needed to obtain >90% of the maximum
power is higher when the first-stage \(R^2 \) is low. In the scenarios simulated here, to achieve >90%
power \(n_X \) needed to be approximately 2,000 (20% of \(n_Y \)), 3,500 (35%), 5,000 (50%), and 7,500
(75%) for first-stage \(R^2 \) values of 0.015, 0.01, 0.007, and 0.004, respectively. Using a two-
sample IV approach, results were very similar (Web Figure 2), with slightly lower power for
most scenarios compared to the subsample IV approach.

Simulation 3: It is well known that traditional “complete-data” IV estimators are biased
towards the confounded association and that bias is most severe when the IV is weak (7, 14). In
contrast, two-sample IV estimates are known to be biased towards the null, even when the
confounded estimate is biased away from the null (4, 5). In Figure 3 (left panel), we show that
the direction of the weak IV bias for subsample MR analyses depends on the \(n_X/n_Y \) ratio. If \(n_X \)
represents a small percentage of \(n_Y \), bias is towards the null as \(F \) decreases, similar to the two-
sample case. In contrast, if the \(n_X/n_Y \) ratio is close to one, bias is towards the observational
estimate as \(F \) decreases, similar to the complete-data scenario. The total number of participants
(\(n_Y \)) is shown as a diagonal line, and the first-stage \(R^2 \) is fixed for each ratio. Figure 3 (right
panel) shows the same simulations conducted in the absence of confounding; hence, no bias
towards the confounded association is observed. For weak IVs, bias towards the null is present
for all subsample scenarios and the estimate moves closer to the null as \(n_X/n_Y \) decreases. For the
two-sample approach (Web Figure 3), bias towards the null increases as \(F \) decreases, regardless
of the value of \(n_X/n_Y \). This is true for both the confounded and the unconfounded scenarios.
Simulation 4: We also assessed weak IV bias for subsample IV scenarios varying the R^2 for the regression of X on G (rather than F), as R^2 may be a more meaningful parameter to MR practitioners (Figure 4). However, because weak IV bias is related to F rather than to R^2, bias does not vary with the n_X/n_Y ratio in a uniform way, as increasing n_X both increases the proportion of participants in the subsample (leading to a greater bias towards the confounded association) and increases the F statistic, leading to a reduction in weak IV bias. Thus, weak IV bias away from the null is much more pronounced when n_Y is small, because n_Y limits size of n_X, reducing the F statistic.

In the traditional complete-data setting, weak IV bias can be explained as resulting from a correlation between the two terms in the Wald estimator: the first-stage and reduced form estimates (14). In the two-sample setting, these estimates are uncorrelated, as they are derived from different data sources. In this case, imprecision in the estimation of the $G-X$ and $G-Y$ associations is analogous to non-differential measurement error in an observational estimate, and results in bias towards the null similar to regression dilution bias (15). In the subsample setting, the bias towards the null and the bias in the direction of the observational association (which is usually in the same direction as the causal effect when this is present) can balance each other out, as demonstrated in the left-hand panel of Figure 3 when the ratio n_X/n_Y is 0.5. The precise ratio required to give unbiased estimates is likely to depend on the characteristics of a given example rather than to be a generalizable result.

All simulations were conducted using SUR and the delta method (with sandwich variance estimates) for calculating CIs. Stata code for using this method is provided in the Web Appendix. Table 1 shows results using several other methods for SE and CI estimation, for three randomly-selected subsample datasets and three two-sample datasets. For both the
subsample and the two-sample strong IV scenarios, the SUR/delta method, sequential regression, Fieller’s theorem, and the Bayesian method produced very similar CIs, with the bootstrap method producing slightly wider CIs. For the moderate IV and weak IV scenarios, the delta and sequential regression methods produce similar results; however, the Fieller, bootstrap, and Bayesian CIs become substantially wider than the CIs produced by these methods and often asymmetrical in the presence of a weak IV. This reflects the true sampling distribution of the IV estimate with a weak IV, which has long tails and is asymmetrical, and is modeled poorly by a normal distribution. In the complete-data MR setting, the reliance on normality assumptions for constructing CIs has been shown to lead to poor coverage properties with weak IVs (13).

However, in our work, coverage under the null was not underestimated when IVs were strong, but was overestimated, with increasingly conservative CIs, as IV strength decreased (Web Table 1).

DISCUSSION

In this paper we have described how subsample and two-sample IV methods can be used to increase the feasibility and cost-efficiency of MR studies. Our primary conclusion is that for epidemiological studies with available genetic data and outcome data, MR investigations can be conducted by generating exposure data for a limited representative sample of the study population with very little loss of power as compared to a study with exposure data for all participants. For example, in our simulated dataset of 10,000 participants, a realistic sample size for large-scale genetic association studies, obtaining exposure data for ~20% of the full sample achieves maximum power when the first-stage R^2 is >0.015. This finding is of critical relevance for causal evaluations of exposures that are expensive to measure or impossible to obtain for the
full set of participants due to lack of prospectively-collected or adequately preserved samples.

For IVs with weaker effects on the exposure of interest ($R^2 < 0.015$), a larger subsample with exposure data may be required. Additional analytical work to help clarify the relationships among n_Y, n_X, R^2, and power is provided in the Web Appendix.

We have also demonstrated that the upper limit for power in an MR study is approximately the power for the reduced form estimator; although this upper limit appears to be slightly higher for subsample IV estimators as compared to two-sample IV estimators. This may be due to the slight residual bias in the direction of the observational estimate in the subsample case and in the direction of the null in the two-sample case. Thus, in theory, exposure data are not needed for a fully-powered test of the hypothesis that the exposure is causally related to the outcome if the the reduced form estimator is used (2). However, the reduced form method does not produce a causal estimate for the effect of the exposure on the outcome and so does not allow the researcher to know whether a null finding is due to lack of a causal association or lack of power (for example, if the CI for IV estimate still includes the observational estimate).

Because the reduced form power is the approximate upper limit for power, power for MR is most efficiently increased by increasing the size of the sample used for estimation of the reduced form equation, rather than the first-stage equation (assuming exposure data are available for a sufficient subset of participants). This conclusion is somewhat intuitive, as the reduced form association (the numerator of the Wald estimator) is typically quite weak and difficult to estimate with statistical confidence, as the association between the IV and the outcome is mediated entirely through the exposure. In contrast, the first-stage association (the denominator) should be well-established and easily detectable in a large epidemiological study.
Thus, the potential gains in cost-efficiency we describe in this work relate only to reducing the amount of exposure data that is needed. For most MR studies, genetic data and outcome data will be needed for very large numbers of participants to achieve adequate power (7), regardless of how much exposure data are generated. This is a major challenge for MR study design, especially considering that most genetic IVs are not especially strong. A possible solution to this is the use of multiple IVs, when available (7, 16).

Our simulations also show that similar efficiency gains can be achieved using two-sample IV estimators, where the first-stage and the reduced form estimation are conducted using data from non-overlapping sets of study participants. The validity of this method depends strongly on the assumption that the first-stage sample and the reduced-form sample are randomly drawn from the same population (similar to the assumption for subsample IVs, where the first-stage sample is a random sample of the reduced-form sample).

As compared to standard IV estimators, subsample IV estimators exhibit different behavior in the presence of weak IVs. For traditional IV estimators, estimates are biased towards the confounded observational association. In contrast, subsample IV estimators are biased towards the null when the subsample is relatively small, similar to two-sample IV estimators (5). However, they are biased towards the confounded association when the subsample is increased, similar to traditional IV estimators.

As a guide to practitioners, we also describe a variety of methods for obtaining SEs and CIs for subsample IV estimators. When the IV is strong, the SUR/delta method used in this work is appropriate, and produces quite similar CIs compared to the other methods examined. However, for moderate and weaker IVs, the Fieller, bootstrap, and Bayesian CIs are considerably larger than those derived from the SUR/delta methods and sequential regression. The SUR/delta
and sequential regression methods are problematic for weak IV scenarios, as they do not
adequately account for the error that accompanies the estimation of the effect of the IV on the
exposure, and they assume that the sampling distribution of the IV estimate is normal. Thus, in
the presence of a weaker IV more robust methods for CI calculation may be needed, such as
bootstrapping. Unfortunately, bootstrapping was not computationally feasible for the simulation-
based work presented here. Fieller’s theorem is a straightforward alternative strategy for CI
calculation without the assumption of a normal distribution for the IV estimate; details of how
this is implemented are provided in the Web Appendix. An additional limitation of the
SUR/delta method is that it is only applicable when one IV is used (5, 6).

In this work, we simulate datasets that represent random samples drawn from a single
population. However, in practice MR investigations may be conducted using data from several
studies, either using pooled data or a meta-analysis approach (17-19). Meta-analyses that derive
their first-stage and reduced form estimates from different studies are actually employing a form
of two-sample IV analysis, similar to that described here. Our results suggest that such
approaches should focus on maximizing the number of participants in the meta-analysis with
data on the IV and the outcome, even if data on the exposure is absent. A cautionary remark is
that the magnitude of association of the IV with the exposure may be different in studies which
derive their participants from different underlying populations, and heterogeneity in this
association should be acknowledged where possible (17). Similarly, subsample IV approaches
should utilize subsamples that are representative of the full sample. This issue may be especially
problematic for MR studies of biomarkers if bio-specimens are available for a subsample that is
not representative of the full sample.

In this work, we have used a continuous variable as an IV, representing a genetic score comprised
of multiple variants. Such a score may be problematic to obtain for exposures with few genetic
determinants which are valid IVs. However, we have previously shown that the first-stage R^2 is the
key parameter influencing power, regardless of what type of IV is used (i.e., single or multiple
IVs, dichotomous, ordinal, or continuous IVs). Thus, our findings for a given first-stage R^2 will
apply to any type of instrument be it continuous, discrete or a set of multiple instruments.

In summary, this work has demonstrated how subsample and two-sample IV methods can
be used to substantially enhance cost-efficiency for MR studies. For large studies with available
genetic and outcome data, it will not be essential to obtain exposure data for all participants.
Generating exposure data for a subset of participants will typically have a very limited impact on
power, with the optimal size of this subset determined by the strength of the IV. Furthermore,
these methods potentially allow for the inclusion of participants for whom it is not feasible to
collect biomarker data. These findings should increase the feasibility of MR for epidemiologists,
especially those interested in utilizing existing genetic data or DNA samples from large-scale
genetic association studies.
ACKNOWLEDGEMENTS

Author affiliations: Department of Health Studies and Comprehensive Cancer Center, University of Chicago, Chicago, Illinois (Brandon L. Pierce); Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom (Stephen Burgess). This work was supported by the National Institutes of Health (Grants R01 ES02050 to B.L.P. and P30 CA014599), the United States Department of Defense (Grant W81XWH-10-1-0499 to B.L.P.), and the Wellcome Trust (grant 100114 to S.B.). The authors would like to thank Dr. Tyler VanderWeele and Dr. Nicholas Mader for their helpful discussions related to this work. The authors have no conflicts of interest to disclose.
REFERENCES

FIGURE LEGENDS

Figure 1. Power (left) and median standard errors (right) for the subsample instrumental variable (IV) estimate for different values of the causal effect size (β_{XY}) and sample size of the first-stage regression (n_X), with a strong IV ($R^2=0.025$), a sample size for the reduced form regression (n_Y) of 10,000, and a confounding variable with equal effects on X and Y ($\beta_{UX} = \beta_{UY} = 0.2$). β_{XY} values are 0.0 (filled diamond), 0.05 (open diamond), 0.1 (filled triangle), 0.15 (open triangle), 0.2 (filled square), and 0.3 (open square).

Figure 2. Power (left) and median standard errors (right) for the subsample instrumental variable (IV) estimate for different values of the first-stage R^2 and the sample size of the first-stage regression (n_X), with a constant effect size ($\beta_{XY}=0.2$), a sample size for the reduced form regression (n_Y) of 10,000, and a confounding variable with equal effects on X and Y ($\beta_{UX} = \beta_{UY} = 0.2$). First-stage R^2 values are 0.002 (filled diamond), 0.004 (open diamond), 0.007 (filled triangle), 0.01 (open triangle), 0.0015 (filled square), 0.2 (open square), 0.03 (filled circle), 0.05 (open circle).

Figure 3. Bias in the subsample instrumental variable (IV) estimate for confounded (left) and unconfounded (right) scenarios for different values of the average first-stage F statistic and the relative size of the subsample used in the first-stage regression (n_X/n_Y) with a constant causal effect size ($\beta_{XY}=0.1$), and a confounding variable with equal effects on X and Y ($\beta_{UX} = \beta_{UY} = 0.3$). Values for n_X/n_Y are 1 (filled diamond), 0.75 (open diamond), 0.5 (filled triangle), 0.25
(open triangle), and 0.1 (filled square). The sample size for the reduced form equation \((n_Y, \text{ on the right vertical axis})\) is shown as dots connected with a dotted line.

Figure 4. Bias in the two-sample instrumental variable (IV) estimate for different values of the first-stage \(R^2\) and the relative size of the sample used in the first-stage regression \((n_x/n_Y)\). The sample size for the reduced for regression \((n_Y)\) is 10,000 (upper), 3,000 (middle) and 1,000 (lower) with a constant causal effect size \((\beta_{XY}=0.1)\), and a confounding variable with equal effects on X and Y \((\beta_{UX}=\beta_{UY}=0.3)\). Values for \(n_x/n_Y\) are 1 (filled diamond), 0.75 (open diamond), 0.5 (filled triangle), 0.25 (open triangle), and 0.1 (filled square).
Table 1. A Comparison of Different Methods for Determining 95% Confidence Intervals for Simulated Datasets\(^a\)

<table>
<thead>
<tr>
<th>Subsample IV</th>
<th>Beta</th>
<th>SE</th>
<th>CI</th>
<th>Beta</th>
<th>SE</th>
<th>CI</th>
<th>Beta</th>
<th>SE</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta Method</td>
<td>0.148</td>
<td>0.057</td>
<td>0.037, 0.259</td>
<td>0.152</td>
<td>0.132</td>
<td>-0.108, 0.411</td>
<td>0.081</td>
<td>0.161</td>
<td>-0.234, 0.397</td>
</tr>
<tr>
<td>Sequential Regression(^c)</td>
<td>0.055</td>
<td>0.039, 0.256</td>
<td>0.128</td>
<td>-0.099, 0.403</td>
<td>0.159</td>
<td>-0.231, 0.394</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieller’s Theorem</td>
<td>NA</td>
<td>0.040, 0.272</td>
<td>NA</td>
<td>-0.108, 0.562</td>
<td>NA</td>
<td>-0.291, 0.602</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bootstrap(^d)</td>
<td>0.068</td>
<td>0.014, 0.280</td>
<td>0.137</td>
<td>-0.117, 0.421</td>
<td>0.551</td>
<td>-0.999, 1.162</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayesian</td>
<td>0.143</td>
<td>0.056</td>
<td>0.040, 0.258</td>
<td>0.174</td>
<td>0.289</td>
<td>-0.161, 0.778</td>
<td>0.089</td>
<td>0.443</td>
<td>-0.563, 0.975</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Two-sample</th>
<th>Beta</th>
<th>SE</th>
<th>CI</th>
<th>Beta</th>
<th>SE</th>
<th>CI</th>
<th>Beta</th>
<th>SE</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta Method</td>
<td>0.117</td>
<td>0.068</td>
<td>-0.015, 0.250</td>
<td>0.051</td>
<td>0.119</td>
<td>-0.182, 0.284</td>
<td>-0.086</td>
<td>0.163</td>
<td>-0.405, 0.232</td>
</tr>
<tr>
<td>Sequential Regression(^c)</td>
<td>0.065</td>
<td>-0.011, 0.245</td>
<td>0.118</td>
<td>-0.181, 0.282</td>
<td>0.160</td>
<td>-0.440, 0.227</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fieller’s Theorem</td>
<td>NA</td>
<td>-0.012, 0.267</td>
<td>NA</td>
<td>-0.201, 0.336</td>
<td>NA</td>
<td>-0.610, 0.280</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bootstrap(^d)</td>
<td>0.071</td>
<td>-0.023, 0.257</td>
<td>0.138</td>
<td>-0.221, 0.322</td>
<td>0.997</td>
<td>-2.041, 1.868</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bayesian</td>
<td>0.119</td>
<td>0.072</td>
<td>-0.013, 0.273</td>
<td>0.055</td>
<td>0.169</td>
<td>-0.232, 0.390</td>
<td>-0.100</td>
<td>0.456</td>
<td>-1.012, 0.554</td>
</tr>
</tbody>
</table>

Instrumental variable, IV; standard error, SE; 95% confidence interval, CI

\(^a\) Simulated datasets consist of 10,000 individuals with data on G and Y and 2,000 with data on G and X. The true effect of X on Y was set to 0.1 and a confounding variable U has effect of 0.2 on both X and Y.

\(^b\) Theoretical F values obtained using to following equation: \(F = R^2(n_X-1) / (1-R^2) \)

\(^c\) For the second stage regression (of sequential regression) robust SEs are reported.

\(^d\) Bootstrap conducted using 1000 replications, with samples of size \(n_X \) and \(n_Y \) randomly selected (with replacement) from the original samples of size \(n_X \) and \(n_Y \).